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ABSTRACT

Recent works have shown the effectiveness of incorporating textual

and visual information to tackle the sparsity problem in recom-

mendation scenarios. To fuse these useful heterogeneous modality

information, an essential prerequisite is to align these information

for modality-robust features learning and semantic understanding.

Unfortunately, existing works mainly focus on tackling the learn-

ing of common knowledge across modalities, while the specific

characteristics of each modality is discarded, which may inevitably

degrade the recommendation performance.

To this end, we propose a pretraining framework PAMD, which

stands for PretrAining Modality-Disentangled Representations

Model. Specifically, PAMD utilizes pretrained VGG19 and Glove

to embed items’ both visual and textual modalities into the con-

tinuous embedding space. Based on these primitive heterogeneous

representations, a disentangled encoder is devised to automati-

cally extract their modality-common characteristics while preserv-

ing their modality-specific characteristics. After this, a contrastive

learning is further designed to guarantee the consistence and gaps

between modality-disentangled representations. To the best of our

knowledge, this is the first pretraining framework to learn modality-

disentangled representations in recommendation scenarios. Exten-

sive experiments on three public real-world datasets demonstrate

the effectiveness of our pretraining solution against a series of state-

of-the-art alternatives, which results in the significant performance

gain of 4.70%-17.44%.

CCS CONCEPTS

• Information systems→ Recommender systems.
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Figure 1: An example to illustrate the modality alignment

problem in recommendation scenario. The characteristics in

blue background are aligned modality features, while char-

acteristics in orange and green background are modality-

specific features of item image and description respectively.

KEYWORDS

Pretraining, Disentangle Encoder, Contrasive Learning, Modality-

Disentangled Representation

ACM Reference Format:

Tengyue Han, PengfeiWang, Shaozhang Niu, and Chenliang Li. 2022. Modal-

ity Matches Modality: Pretraining Modality-Disentangled Item Representa-

tions for Recommendation. In Proceedings of the ACM Web Conference 2022
(WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3485447.3512079

1 INTRODUCTION

Recommender system is a widespread application of artificial in-

telligence techniques. Such system plays a central role in shop-

ping scenarios by sifting the items a user prefers from huge cor-

pora [21, 33, 34]. To generate a high-quality recommendation, fus-

ing different modalities relevant with items (i.e., textual or visual
information) to alleviate the sparsity problem now is becoming an

attractive topic [2, 3, 5, 13, 14, 24].

Previous works have demonstrated the effectiveness of learning

uni-modality item representations in recommendation scenarios,

e.g., using textual or image data [12, 20, 24]. However, exploiting

uni-modality information may not produce a comprehensive fea-

ture learning for each item than combining multiple heterogeneous

information of different modalities together. Generally, to fuse these

heterogeneous information together, an essential prerequisite is

to align these cross-modality data precisely for facilitating both

modality-robust feature learning and better preference estimation.

Unfortunately, existing works mainly focus on learning common
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knowledge across modalities [4, 6, 11], while the specific character-

istics of each modality is usually discarded, which could be very

useful for recommendation.

In Fig. 1, we choose a simple example to explain this point fur-

ther. We can see that both the image and the textual description of

an item can enrich semantics that are beneficial to the recommen-

dation task. Specifically, both the textual description and the image

share some common knowledge and also provide modality-specific

knowledge towards the item respectively. Hence, the key challenge

is to design appropriate matching metrics between these modali-

ties for alignment without explicit supervision. Though previous

works [9, 41] utilize encoder-decoder models to align their com-

mon characteristics (i.e., features in blue background), the modality-

specific characteristics (i.e., the features in either green or orange

background) are always neglected. This information loss phenom-

enon may inevitably degrade the recommendation performance.

A simple solution is to directly fuse heterogeneous information of

different modalities with some simple operation like vector con-

catenation. However, this straightforward fusion approach encodes

both modality-common and modality-specific features into a single

vector representation and therefore complicates the model learning

process, leading to inferior performance. How to align common

characteristics of multi-modal data and preserve their specific char-

acteristics, is an interesting yet challenging problem.

To this end, a pretraining modality disentangled representation

framework, named PAMD is proposed to support multi-modality

driven item recommendation. PAMD contains two components: a

disentangled encoder to decompose multi-modal information into

modality-common and modality-specific features, and a contrastive
learning with a self-supervised objective to guarantee the pre-

cise alignment and separation between these decomposed features.

Specifically, given both the visual and textual modality that an item

is associated with, PAMD utilizes the off-the-shelf VGG19 [36] and

Glove [30] to embed modalities into the continuous embedding

space respectively. Based on these primitive heterogeneous rep-

resentations, PAMD first feeds them into a disentangled encoder,

where each modality data is decomposed into two representations:

a modality-common representation that shares semantics across

modalities, and a modality-specific representation that contains

the unique characteristics in this modality channel. After this, a

contrastive learning is further designed to ensure precise alignment

and separation between these decomposed representations. Owing

to the benefit of self-supervised training, our PAMD can automat-

ically learn modality-disentangled item representations without

supervised signals, and are proven to be more effective than the

existing state-of-the-art recommendation models. To summarize,

the main contributions of this paper are listed as follows:

• We propose a pretraining framework to learn modality-

disentangled item representations. To the best of our knowl-

edge, this is the first attempt in leveraging multi-modal in-

formation in recommendation scenarios in a self-supervised

pretraining paradigm.

• In our proposed PAMD, we design a disentangled encoder

to decompose representations, and a contrastive learning to

guide the alignment and separation between these decom-

posed representations.

• Empirical results on three real world datasets demonstrate

that the proposed pretraining scheme is feasible and our

PAMD achieves significantly better recommendation perfor-

mance than many state-of-the-art baselines.

2 RELATEDWORKS

There have been many representative efforts of exploiting different

modality data for recommendation. In this section, we provide a

brief overview of the relevant works from two perspectives: modal-

ity representation learning and the pretraining techniques.

2.1 Multi-modal Representation Learning

Multi-modal representation learning which aims to learn a com-

prehensive representation by considering heterogeneous informa-

tion from different modalities jointly, now is becoming one of the

most important problem in multi-modal applications [38, 43]. Cur-

rently, there are two dominating learning paradigms for modality

fusion [1]: joint representation learning and coordinated represen-

tation learning.

The joint representation learning aims to project uni-modal rep-

resentations together into a shared semantic subspace for modality

fusion, which is usually used in tasks where multi-modal data is

present during both training and inference stages. Previous works

usually concatenate single-modal feature directly to obtain the final

representations [22, 28]. Due to the recent revive of neural models,

many works attempt to learn a better function for modalities fusion

with deep neural networks. For example, Jiang et al. [19] proposed
a novel unified framework that jointly exploits the feature relation-

ships and the class relationships in a high-level semantics. Qi et
al. [31] captured cross-modal correlation by bidirectional transla-

tion training in both visual and textual feature spaces.

Instead of projecting the modalities together into a joint space,

the coordinated representation leaning aims to learn each modality

data separately, and coordinates them with constraints. This learn-

ing approach is suitable for applications where only one modality

is present at inference stage, such as multi-modal retrieval, transla-

tion and zero-shot, etc. For example, Yan et al. [42] matched images

and captions in a joint latent space built by using deep canoni-

cal correlation analysis. Huang et al. [18] proposed a multi-modal

unsupervised image-to-image translation framework to learn the

conditional distribution of corresponding modality in the target

domain. Wu et al. [40] presented a general framework for the zero-

shot event detection using only textual descriptions.

Recently, multi-modal fusion approach is also introduced into

recommendation system to alleviate the data sparsity problem. Re-

searchers have developed a series of hybrid approaches of incorpo-

rating the items’ content information and the collaborative filtering

effects for recommendation [25]. For example, Chen et al. [4] ex-

plored the fine-grained user preference on the items and introduced

a novel attention mechanism to model item- and component-level

feedbacks in multimedia recommendation. Wei et al. [39] devised

a novel GCN-based framework to leverage information exchange

between users and micro-videos for better recommendation.
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2.2 Pretraining Models

Pretraining has been intensively studied in the past years. A series

of studies have gradually pushed the frontier of model performance

and proven its worth in a wide range of tasks [26, 29, 44].

For example, Devlin et al. [8] introduced masked language mod-

elling, which aims to encode the contextual semantics in terms of

interactions between left and right context words. Lewis et al. [23]
designed a denoising autoencoder to pretrain sequence-to-sequence

models. Dahl et al. [7] found that pretraining with deep belief net-

works can well improve the feedforward acoustic models. Mert et

al. [35] introduced image-conditioned masked language modeling

as a proxy task to learn visual representations over image-caption

pairs.

Recently, some recommendation works [32, 45] also employed

the pretraining technique by learning better hidden representations

to enhance the recommendation performance [27]. For example,

Sun et al. [37] utilized the Transformer and the Cloze objective to

learn bidirectional contextual representations for the user interac-

tions. Zhou et al. [46] designed several auxiliary self-supervised

tasks to enhance the data representations for sequence data to

improve sequential recommendation. Qiu et al. [32] designed a

pretraining framework that utilized two self-supervision tasks to

leverage the abundant reviews in other domains to model user

preferences for recommendation.

To the best of our knowledge, we are the first work of leveraging

multi-modal information in a pretraining framework for recom-

mendation. We introduce a novel pretraining framework, which

respectively models the common part and specific part of charac-

teristics, to resolve the above mentioned problem.

3 PRELIMINARY

Let I denote the set of items, for each item i ∈ I, we use vi and
ti to denote its visual and textual modality respectively. We aim

to align the common characteristics of vi and ti , while preserving
their specific characteristics for the downstream recommendation

task. For simplicity, we describe the algorithm for a single item, and

drop the subscript of i in the notations to keep conciseness.

4 OUR APPROACH

In this section, we introduce our pretraining framework in detail.

The architecture of PAMD is shown in Fig.2, which consists of two

main modules: a disentangled encoder to decompose modalities to

obtain their common and specific representations respectively, and

a contrastive learning is further applied on modality-disentangled

representations to generate a contrastive loss to guide the model

optimization.

4.1 Disentangled Encoder

Given the modalities of an item, we first project them into a low di-

mensional space. Specifically, for visual modality, we use pretrained

VGG19 [36] to derive the visual features and generate its primitive

representation via a MLP layer, denoted as ev . As for textual modal-

ity, we utilize Glove [30] to obtain the word embeddings. Then these

word embeddings are concatenated and fed into a MLP layer to

derive the textual primitive representation, denoted as et . Based on

the representations ev and et , the proposed disentangled encoder

uses the following function to extract their common characteristics

as follows:

e
c
t = MLP(et ;Θt ); e

c
v = MLP(ev ;Θv ) (1)

where Θt and Θv are all the parameters for the MLP layer respec-

tively. Given the primitive and extracted common representations

of each modality, we then utilize a subtraction operation to obtain

the specific representations of both textual and visual modality as

follows:

e
s
t = et − e

c
t ; e

s
v = ev − e

c
v (2)

According to Eq. 1 and Eq. 2, we decompose each modality to

two distinct representations. To guarantee the resultant modality-

common and -specific representations capture different aspects

of the modalities, we further add constraints on the decomposed

representations. Specifically, for modality-common representations,

we minimize their discrepancy to force them align together, while

for modality-specific characteristics, we apply an orthogonality

constraint to force these modality-specific representations share

none common characteristics. The loss of disentangled encoder is

written as follows:

Len = | |ect − e
c
v | |

2 + | |est · e
s
v | |

2
(3)

where Θ represents the learnable parameters (i.e., Θ={Θt ,Θv }).

4.2 Contrastive Learning

Recall that in disentangled encoder, though we force the disentan-

gled representations containing different aspects of modalities, we

cannot guarantee each representation containing the desired prop-

erties (i.e., the common representation really keeps the common

characteristics over modalities). Note that it is hard to build the

supervision signals to guide the above decomposition process. Even

feasible, any label for the modality-common and modality-specific

features are expensive to obtain. Here, we introduce a contrastive

objective to optimize our pertraining model. In detail, we firstly

aim to perform the cross-modality alignment over these represen-

tations by taking the primitive representations ev and et as anchor.

Specifically, for modality-common representations, we aim to learn

a representation mapping network across modalities as follows:

ê
c
t = MLP(ecv ;Φv ); ê

c
v = MLP(ect ;Φt ) (4)

where ê
c
v and ê

c
t represent the transformed representations ob-

tained by using ect and ecv respectively, Φt and Φv are learnable

parameters. This network is expected to precisely realize the repre-

sentation mapping for modality-common features, which can only

be achieved when both ev and et contains no noisy information

(e.g., the modality-specific features). By minimizing cross-modality

gap Lc
de as follows, we can ensure the correctness of extracting

common characteristics to its maximum:

Lc
de = | |et − ê

c
t | |

2 + | |ev − ê
c
v | |

2
(5)

However, in the downstream task, we find the recommendation

performance is quite unstable. The reason still lies in the decom-

posing process of the disentangled encoder. As lack of supervised

signals, PAMD has a large freedom to reach a local optimum for

modality decomposition. For example, a wrong decomposition (i.e.,
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Figure 2: Over architecture of our proposed Pre-trAining Modality-Disentangled representations model. PAMD contains two

components: a disentangled encoder to decompose modalities into common and specific representations, and a contrastive

learning generates a contrastive loss to guide the model optimization.

assigning common features to the specific counterpart) will lose

informative aspects that are shared across modalities (ref. Eq. 5).

Therefore, we introduce a contrastive loss by further feeding

modality-primitive and -specific representations into optimization.

Specifically, similar with Eq. 4, we feed primitive and specific modal-

ity representations to obtain their transformed representations as

follows:

êv = MLP(et ;Φt ); êt = MLP(ev ;Φv ) (6)

ê
s
v = MLP(est ;Φt ); ê

s
t = MLP(esv ;Φv ) (7)

Based on these transformed representations, we then measure the

gap between the original representation and the corresponding

transferred representation as follows:

L
p
de = | |et − êt | |

2 + | |ev − êv | |
2

(8)

Ls
de = | |et − ê

s
t | |

2 + | |ev − ê
s
v | |

2
(9)

Note that parameters Φt and Φv are introduced solely to map

the modality-common features across the two modalities. Since

the gaps measured in Lc
de , L

p
de and Ls

de all use the primitive

representation et and ev as the anchor. It is expected that Lc
de

should be smaller than L
p
de , since e

c
t and ecv are the more desired

inputs for the mapping than et and ev respectively. Similarly, since

we expect est and esv to contain no common characteristics, L
p
de

should be smaller thanLs
de . Hence, an inherent contrastive learning

objective can be formulated as follows:

Lde = argmin

Φ
log

(
σ (Lc

de − L
p
de )

)
+ log

(
σ (L

p
de − Ls

de )
)

(10)

where Φ represents all parameters used in the contrastive learning,

Φ = {Φt ,Φv }.

4.3 Pretraining and Recommendation

Pretraining. Recall that we also have an encoder loss defined in

Eq. 3, by incorporating it with the contrastive loss formulated in

Eq. 10, the final loss objective is written as follows:

Lpre = Lde + Len (11)

It is obvious to see that this loss objective is self-supervised and

requires no explicit supervision. We can perform the pretraining

with Eq. 11 on any dataset and plug the resultant modality-common

and -specific representations into many recommendation models.

We choose stochastic gradient descent (SGD) to minimize the loss

function.

Recommendation. After the pertaining stage, each item is as-

sociated with four modality representations. To leverage these

representations directly, we adopt pairwise ranking optimization

framework (BPR) [33] as the downstream recommendation model.

Specifically, we utilize an attention mechanism to calculate atten-

tion weights of each modality representation as follows:

[act ,a
c
c ,a

s
t ,a

v ] = so f tmax(
e[ect , e

c
v , e

s
t , e

s
v ]

T
√
d

) (12)

where e is the learnable item representation, d represents the em-

bedding dimension size. We then fuse all representations according

to these weights to obtain a refined item representation:

e = e + act e
c
t + a

c
ve

c
v + a

s
t e

s
t + a

s
ve

s
v (13)

Note that for BPR model learning, both the user embeddings and

item embeddings (i.e., e) are initialized and updated via the Adam

optimizer. The parametersΘ of PAMD are further fine-tuned during

this recommendation learning phase. Given a user and an item, we

compute the preference score with the inner product. We than rank

the items according to their scores, and select the top-N results as

the final recommendations.

5 EXPERIMENTS

In this section, we evaluate our proposed PAMD
1
over three real-

world datasets. We firstly describe the experimental settings, and

then discuss the results.

1
https://github.com/hantengyue/PAMD
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Table 1: Statistics of datasets for experiments.

Datasets #Users #Items #Feedbacks

Clothing, Shoes & Jewelry 39,387 23,033 278,677

Yelp 10,457 8,937 90,301

Allrecipes 149,672 39,213 2,307,996

5.1 Dataset

Weevaluate different recommendation algorithms over three datasets,

including one e-commerce recommendation dataset, one review

dataset, and one diet rating dataset.

• Clothing, Shoes& Jewelry
2
is a category of Amazon, which

comprises a large corpora of item descriptions and images

on more than 20, 000 items.

• Yelp
3
dataset is a subset of Yelp’s businesses, reviews, and

user data. Here, we use the data spanning from Jan 1, 2020

to Dec 1, 2020.

• Allrecipes
4
is a diet dataset crawled from Allrecipes.com, a

recipe-sharing platform for western diet.

We perform the following preprocessing on the three datasets.

Since our focus is to leverage multi-modal information for recom-

mendation, we first remove items without textual information or

images in each dataset. Then, we choose to retain the 5-core users

and items such that each user or item is associated with at least

5 interactions, which is a common setting in the relevant litera-

ture [21]. The statistics of three datasets after preprocessing are

reported in Table 1.

5.2 Evaluation Metrics

In order to present a comprehensive evaluation, we choose to apply

5-fold cross validation where the ratio of training, validation and

testing is 3 : 1 : 1. Following the recommended setting in [10], we

choose to apply sampled metric for performance evaluation. Specif-

ically, for each user, we randomly pair 1, 000 negative items, and

rank these items with the ground-truth items. Two widely adopted

metrics are used in the experiments: Recall@K and NDCG@K
(k = 5/10). Here, Recall@K measures the percentage of target

items appearing in the top-K results. NDCG@K further takes the

ranking position in the top-K list into account, such that the higher

rankings for the ground-truth items produce larger NDCG scores,

i.e., a better recommendation performance. We also perform statis-

tical significance test by using the paired t-test. The differences are

considered statistically significant when the p-value is lower than

0.05.

5.3 Baselines

To evaluate the effectiveness of our approach, we compare PAMD

against the following competitive methods, including one tradi-

tional recommender, three modality-enhanced recommenders, and

three multi-modal recommenders. For traditional recommnder, we

consider BPR, which is also used as the built-in recommender in

our proposed PAMD:

2
http://deepyeti.ucsd.edu/jianmo/amazon/index.html

3
https://www.yelp.com/dataset

4
https://www.kaggle.com/elisaxxygao/foodrecsysv1

• BPR [33]: Bayesian personalized ranking algorithm with

matrix factorization, which is a well-known item recommen-

dation method.

For modailty-enhanced recommenders, we consider the enhanced

versions of BPR, NFM, and NeuMF, which treat modality informa-

tion as extra contextual features for recommendation:

• BPR++: This is an enhanced version of standard BPR model,

which leverages both visual and textual modality informa-

tion of items as its representations, and uses the matrix fac-

torization (MF) framework to reconstruct the historical in-

teractions between users and items. In the experiments, we

use the concatenation of multi-modal features as the content

information for recommendation.

• NFM++: The neural factorization machine (NFM) [15] is a

deep architecture for effective feature interaction modeling.

For fair comparison, we enhance original NFM by including

both the image and description as contextual features.

• NeuMF++: By concatenating each item with its visual and

textual representations, we adopt NeuMF [16] to model their

complex interactions.

The multi-modal recommenders include:

• VECF [4]: VECF is a multi-modal attention network that

jointly leverages image region-level features and the auxil-

iary textual information for fashion-aware recommendation.

• Corr-AE [9]: A cross-modal learning model utilizes corre-

spondence autoencoder to incorporate both representation

learning and correlation learning across different modalities.

Here, Corre-AE is adopted to pretrain textural and visual

representations, and apply BPR on them for recommenda-

tion.

• MMGCN [39] : Multi-modal Graph Convolution Network

(MMGCN)] is a state-of-the-art multi-modal approach, which

builds user-item bipartite graph for each modal, then uses

GCN to train each bipartite graph. Then, MMGCN merges

these multi-modal information for recommendation.

5.4 Parameter Settings

For all recommendation methods in comparison, we initialize the

embedding vectors in the range of (0, 1). To enable a fair comparison,

we select the best learning rate for each method in the range of

{0.0001, 0.001, 0.01, 0.05, 0.1}, and the dimension size is tuned in

the range of {100, 150, 200, 250, 300, 350}. Moreover, we tune all

parameters of baselines according to the validation set.

For the modality-enhanced models including BPR++, NFM++,

and NeuMF++, we use VGG-19 to obtain the visual representa-

tions, and Glove for textual representations, which is the same as

PAMD. Specifically, as to PAMD, the learning rate is set to 10
−3
,

the batch size is 100, and the embedding dimension is set to 150. In

the recommendation phase, the learning rate is set to 10
−4
.

5.5 Performance Comparison

The overall performance of our proposed PAMD and all the base-

lines are reported in Table 2. Here, we have the following observa-

tions:
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Table 2: Performance comparison between baselines and our model PAMD for recommendation. The best performance of

each column is highlighted in boldface. Symbol ∗ denotes the best baseline. Symbol ▲ denotes the relative improvement of

our results against the best baseline, which are consistently significant at 0.05 level.

Dataset Metrics BPR BPR++ NFM++ NeuMF++ VECF Corr-AE MMGCN PAMD ▲(%)

Clothing, Shoes

& Jewelry

Recall@5 0.0273 0.0601 0.0678 0.0731 0.0825 0.0847 0.0932
∗

0.1066 14.38

Recall@10 0.0416 0.0927 0.1034 0.1101 0.1189 0.1186 0.1321
∗

0.1451 9.84

NDCG@5 0.0212 0.0459 0.0520 0.0556 0.0575 0.0680 0.0732
∗

0.0874 19.40

NDCG@10 0.0267 0.0580 0.0654 0.0695 0.0705 0.0805 0.0866
∗

0.1017 17.44

Yelp

Recall@5 0.0445 0.0633 0.0700 0.0763 0.0853 0.1077 0.1238
∗

0.1341 8.32

Recall@10 0.0715 0.0852 0.1025 0.1055 0.1306 0.1522 0.1702
∗

0.1895 11.34

NDCG@5 0.0345 0.0540 0.0561 0.0668 0.0764 0.0836 0.1127
∗

0.1229 9.05

NDCG@10 0.0453 0.0631 0.0709 0.0763 0.1171 0.1181 0.1232
∗

0.1442 17.05

Allrecipes

Recall@5 0.1002 0.1244 0.1357 0.1402 0.1469 0.1488 0.1527
∗

0.1637 7.2

Recall@10 0.1624 0.1891 0.2110 0.2181 0.2216 0.2274 0.2427
∗

0.2541 4.70

NDCG@5 0.0860 0.1096 0.1178 0.1212 0.1358 0.1361 0.1391
∗

0.1460 4.96

NDCG@10 0.1135 0.1382 0.1606 0.1652 0.1712 0.1754 0.1783
∗

0.1895 6.28

(1) By incorporating multi-modal information, we can see that

BPR++ performs better than BPR. This verifies the advantage of

integrating different modalities for recommendation. It is reason-

able since the different modality information could generate more

comprehensive representation for an item, which in turn enhances

user preferences learning.

(2) We see that Corr-AE performs consistently better than VECF

over all the three datasets. The reason might be that though both

Corr-AE and VECF consider the alignment problem over visual

and textual modalities, VCEF only utilizes the fine-grained visual

characteristics. This treatment could inevitably introduce a signifi-

cant loss of textual information, which could adversely affect the

recommendation performance. Comparing with VCEF and Corr-AE,

MMGCN utilizes a graph convolutional network to refine the high-

order collaborative user-item interactions based on the modality

information, and obtains a better performance.

(3) Finally, by leveraging both modality-common and -specific

item representations, our proposed PAMD achieves significantly

better recommendation performance across the three datasets in

terms of both Recall and NDCG. Take the Clothing, Shoes & Jew-
elry dataset as an example, when compared with the best base-

line (i.e.,MMGCN), the relative performance improvement obtained

by PAMD is about 9.84% and 17.4% on Recall@10 and NDCG@10

respectively. It is worthwhile to highlight that our proposed PAMD

performs recommendation with a simple BPR module. As we ob-

served in Table 2, either BPR and BPR++ achieves much worse

performance than the other recommendation models. The supe-

rior performance obtained by PAMD suggests the effectiveness of

pretraining modality-disentangled item representations.

5.6 Ablation Study on PAMD

PAMD is a pretraining model aiming at learning modality-common

and -specific item representations. These representations are further

fine-tuned for the downstream task. In this section, we investigate

the impact of different design choices via ablation study.

Table 3: Performance comparison of PAMD and its differ-

ent variants on three datasets. The best performance is high-

lighted in boldface.

Dataset Metrics PAMD¬s PAMD¬c PAMD

Clothing, Shoes

& Jewelry

Recall@10 0.1347 0.1371 0.1451

NDCG@10 0.0945 0.0959 0.1017

Yelp

Recall@10 0.1789 0.1827 0.1895

NDCG@10 0.1374 0.1398 0.1442

Allrecipes

Recall@10 0.2391 0.2465 0.2541

NDCG@10 0.1749 0.1792 0.1895

Modality-Common vs. Modality-Specific Firstly, we analyze

the recommendation performance when only utilizing modality-

common and -specific representations respectively. Specifically, in

the recommendation phase, we remove the modality-specific em-

beddings and only utilize modality-common representations, and

we denote this variant as PAMD¬s . Similarly, we choose to keep the

modality-specific representations instead for recommendation, we

denote it as PAMD¬c . Table 3 reports the performance comparison

of these models.

An interesting observation is that PAMD¬c performs slightly

better than PAMD¬s . The same observation is also made in the

previous work [43]. Moreover, it is clear that PAMD obtains bet-

ter performance than these two variants. This suggests that each

modality indeed has its own specific characteristics that cannot be

aligned with another modality. Those unaligned characteristics also

play significant contribution towards a better recommendation. By

considering both modality-common and -specific characteristics,

PAMD can offer robust and comprehensive feature learning for

better recommendation.

Contrastive Learning vs.Non-Contrastive Learning. Another
key novelty of our proposed PAMD lies on the proposal of a con-

trastive loss to guide the pretraining process (Eq.9). Here, we aim

to check whether it is more effective than the other options.

2063



Modality Matches Modality: Pretraining Modality-Disentangled Item Representations for Recommendation WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 4: Performance comparison of PAMD when applying

different learning strategies. The best performance is high-

lighted in boldface.

Dataset Metrics PAMD-CON PAMD

Clothing, Shoes

& Jewelry

Recall@10 0.1255 0.1451

NDCG@10 0.0881 0.1017

Yelp

Recall@10 0.1727 0.1895

NDCG@10 0.1352 0.1442

Allrecipes

Recall@10 0.2418 0.2541

NDCG@10 0.1790 0.1895

Specifically, we can update the objective function of PAMD as

follows:

L = Len + Lc
de (14)

According to Eq. 14, PAMD pretrains multi-modal representations

without a contrastive strategy. We refer to this new setting as

PAMD-CON. Table 4 shows the performance of these two different

learning strategies.

It is obvious that PAMD consistently outperforms PAMD-CON

on three datasets. This suggests that the proposed contrastive learn-

ing strategy is more effective: PAMD can well handle the alignment

and separation over modalities, and obtains robust modality rep-

resentations. In addition, we observe that PAMD also converges

faster in the pretraining phase. We take Clothing, Shoes & Jewelry
as an example, comparing with PAMD-CON, the time saved by

PAMD to reach convergence is around 23.6%.

Disentangled Encoder vs. Contrastive Learning. PAMD uti-

lizes two components to pretrain modality representations: a dis-

entangled encoder and a contrastive learning. In this section, we

further analyze the impact of these two components respectively.

Specifically, we choose only the loss function defined in Eq. 3 and

Eq. 10 to train our model respectively. In this sense, PAMD directly

degrades to a disentangled encoder and a contrastive learning re-

spectively. We refer to these two settings as PAMDen and PAMDde
respectively. Note that when only utilizing Eq. 10 for optimization,

as there is no correlation constraint for both modality-common

and -specific representations, PAMDde is similar to an autoencoder

model [17] to perform transfer between visual and textual modality.

Table 5 reports the performance comparison among PAMD and

these two variants. We can see that PAMDde performs better than

PAMDen . This observation demonstrates the necessity of modal-

ity alignment in the learning process. Though PAMDen preserves

more characteristics by cross-modality matching for the common

knowledge. However, without a cross-modality alignment process,

the matching process of disentangled encoder would easily fail

to extract the real common characteristics. These unaligned com-

mon features bring noises and in turn adversely affect the final

recommendation performance. By combining these two compo-

nents together, PAMD can well align the common characteristics

while preserving the specific characteristics for each modality, and

obtain the best performance.

Table 5: Performance comparison of PAMD, PAMD en and

PAMD de on the three datasets. Best performance is high-

lighted in boldface.

Dataset Metrics PAMDen PAMDde PAMD

Clothing, Shoes

& Jewelry

Recall@10 0.1155 0.1284 0.1451

NDCG@10 0.0781 0.0842 0.1017

Yelp

Recall@10 0.1427 0.1658 0.1895

NDCG@10 0.1252 0.1374 0.1442

Allrecipes

Recall@10 0.2268 0.2467 0.2541

NDCG@10 0.1720 0.1819 0.1895

5.7 Analysis on Pretraining Stage

Considering PAMD consists of a pretraining stage and a recommen-

dation stage. In this section, we aim to analyze the recommendation

performance when utilizing different pretraining settings. For sim-

plicity, we only give the results on Allrecipes dataset due to the page
limitation, and the results on other two datasets are quite similar.

RecommendationPerformancew.r.t theAmount of Pretrain-

ing Epoch. In the pretraining stage, PAMD can learn the enhanced

representations from different modalities, the number of pretrain-

ing epochs thus is an important factor that affects the performance

of the downstream recommendation task. To investigate this, we

pretrain our model with a varying number of epochs and then fine-

tune it on the recommendation task. Fig. 3(a) presents the results

on Allrecipes dataset.
We can see that the recommendation performance benefitsmostly

from the first 100 epochs. And after that, the performance im-

proves slightly. Based on this observation, we can conclude that

according a combination learning over two encoders, PAMD can

obtain high-quality modality-disentangled representations by the

self-supervised approach within a small number of epochs. Con-

sidering our PAMD is a pretraining model aiming to learn robust

modality-disentangled representations for items, the run-time of

model training linearly depends on the number of items.

RecommendationPerformancew.r.t theAmount of Pretrain-

ing Data. As the cold start problem is a common challenge that

recommendation system suffered in real-world applications. In this

section, we consider the impact of data sparsity to our pretrain-

ing stage. Specifically, we simulate the data sparsity scenario by

randomly masking different proportion of modality information

from datasets, i.e., 20%, 40%, 60%, 80%, and 100%. Fig. 3(b) shows the

recommendation performance on Allrecipes dataset.

(1) We see that when masking all modality information, the

modality-enhanced approaches perform better than multi-modal

approaches. This is conventional as all multi-modal approaches will

degrade to common pair-wise ranking models when no modality

information is included, while the modality-enhanced approaches

can still benefit from modeling complex interactions over user and

items.

(2) The performance of all models substantially increases when

feeding more modality data. However, for modality-enhanced rec-

ommenders, the improvements turn to be not significant when

considering more modality data. This observation demonstrates
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(c) Different models enhanced by PAMD.

Figure 3: Performance comparison of differnt number of pretraining epochs (a), different sparsity levels (b), and the existing

models enhanced by PAMD (c) on Allrecipes in terms of NDCG@10.

Table 6: Distribution of different representation types on

three datasets.

Dataset Common-feature Specific-feature

Clothing, Shoes & Jewelry 47.85% 52.15%

Yelp 47.28% 52.72%

Allrecipes 46.18% 53.82%

our assumption: It is non-trivial to perform multi-modal informa-

tion fusion to enhance the recommendation performance. While

for the multi-modal recommenders, according to the attention or

cross-modality tricks, then can still enjoy a better improvement

when fusing more modality data.

(3) Finally, PAMD consistently performs better than baselines

in most cases, this observation implies that PAMD is able to make

better use of the data according to the designed matching technique,

which can well alleviate the influence of data sparsity problem for

recommendation to some extent.

5.8 Adapting PAMD to Other Recommendation

Models

In PAMD, the modality-common and -specific representations can

be learned in the pretraining phase, these high-quality representa-

tions can also be plugged into other recommendation models. In

this section, we conduct experiments to check whether PAMD can

bring further improvements to other models.

Specifically, based on the well pretrained modality represen-

tations on Allrecipes dataset, we directly apply them on BPR++,

NFM++, NeuMF++, and MMGCN, by concatenating these four dif-

ferent representations together. We do not consider BPR and VCEF

as when feeding the pretrained representations to BPR, BPR is the

same with BPR++, while for VCEF, its architecture does not support

the pretraining objectives. Note that we also fine-tune the hidden

dimension size over the validation set to enable the fair comparison.

The results of NDCG@10 on Allrecipes dataset are illustrated
in Figure 3(c). We can see that after pretraining by PAMD, all the

baselines can achieve better performance. It demonstrates the effec-

tiveness of our pertaining strategy, which can learn robust modality-

disentangled item representations.

5.9 Visualizing Attention

In this section, we analyze the impact of different types of modality

representations over each dataset, so as to understand which type

of disentangled representations are more useful in the recommen-

dation stage.

Specifically, for each user-item pair that PAMD recommends

correctly in the testing stage, we identify the type of representa-

tions (the specific and common type) with the highest-attention

score. We then analyze the distribution of the two types. For ex-

ample, if there are 10 correctly recommended pairs, the modality-

specific representation was learned as the highest attention score

for 3 times, then the percentage of specific type will be 0.3. This

distribution on three datasets is reported in Table 6.

As we can see, the modality-specific information plays a rela-

tively more important role on the three datasets. This observation is

interesting and consistent with the previous experiments (in Section

Modality-Common vs.Modality-Specific). This further demon-

strates the importance of preserving both the modality-common

and -specific representations for better recommendation.

6 CONCLUSION

In this work, we propose a pretraining framework (named PAMD),

which aims to learn modality-common and modality-specific rep-

resentations for recommendation. Specifically, PAMD contains a

disentangled encoder and a contrastive learning. The disentangled

encoder aims to automatically extract their modality-common char-

acteristics while preserving their modality-specific characteristics.

The contrastive learning aims to guarantee the consistence and

gaps between modality-disentangled representations instead.

Both modality-common and modality-specific have their own

contributions to the improvement of recommendation performance.

We hope this work can provide a new perspective on multi-modal

representation learning for recommendation. To the best of our

knowledge, this is the first pretraining framework to learn modality-

disentangled representations in recommendation scenarios.
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